

Introduction to the Savannah River Basin Surface Water Quantity Model

Agenda Item 7

What is a Model?

A **numerical model** is a representation of a real-world system that can be solved with computation methods

Numerical models allow us to explore and consider **possible futures**

Models should be as **simple** as possible and as **complex** as needed.

"All models are wrong, some are useful" George Box, 1976 British Statistician

Box's point was that we should focus more on whether something can be applied in a useful manner rather than debating endlessly if an answer is correct in all cases

Savannah River Basin Surface Water Model Overview

Water Allocation Modeling is:

- Water balance calculations of physical flow
- Water rights calculations of legally available flow
- Accounting of water demands, withdrawals, and return flows
- Accounting of reservoir storage and loss to evaporation
- A representation of stream networks, multiple "nodes"
- Data intensive

Savannah River Basin Surface Water Model Overview

Water Allocation Modeling *is not*:

- Rainfall-runoff calculations
- Hydrologic routing calculations
- Groundwater hydrology modeling
- Water quality modeling

Simplified Water Allocation Model (SWAM)

- Developed as a desktop tool to facilitate regional and statewide water planning and allocation
- SWAM calculates physically and legally available water, diversions, storage, consumption and return flows at user-defined nodes
- From 2014 to 2017, all eight South Carolina surface water quantity models were built in the SWAM platform
- Model updates were completed in 2023

In Support of Savannah River Basin Planning, the Model Will be Used to:

- Assess current supply availability and shortages across a range of hydrologic conditions (1939 through 2022 – 83 years)
- Assess a range of future potential scenarios with respect to changes in water demand
- Assess potential impacts of a "full allocation" scenario
- Compare managed flows to natural flows
- Evaluate drought management plans
- Test, evaluate and help prioritize water management strategies

Model Inputs and Supporting Information

Model Inputs

- USGS daily flow records
- Historical operational data
 - Withdrawals (municipal, industrial, thermoelectric, agricultural, golf courses, hatcheries)
 - Wastewater discharges and return flows
 - Transfers in and out of the basin
- Reservoir characteristics and operating rules

Supporting Information

- Subbasin characteristics
 - Drainage area, land use, and slope

USGS Gage Timeline –Savannah River Basin

Modeled River/Streams and locations of USGS Streamflow Gaging Stations

5

SWAM Calculations: Supply

Physically available flow is a function of:

- upstream tributary inflows,
- reach gains and losses,
- upstream diversions, withdrawals, returns, and storage

Twelvemile Creek Headwater Flows

Year	Month	Monthly
(YYYY)	(MMM)	Flow (CFS)
1939	Oct	9.36
1939	Nov	9.13
1939	Dec	9.02
1940	Jan	12.00
1940	Feb	24.87
1940	Mar	22.81
1940	Apr	33.00
1940	May	20.26
1940	Jun	15.31
1940	Jul	13.21
1940	Aug	70.99
1940	Sep	34.11
1940	Oct	14.51
1940	Nov	18.51
1940	Dec	23.02

SWAM Calculations: Supply

- Legally available flow is a function of:
 - Permit limits / water rights
 - Minimum Instream flow requirements
 - Storage rights
 - Downstream priority water uses

WS: Pickens

SWAM Calculations: Demand

WS: Pickens

 \times

- WS: User Object:	Water User								
	Main Water Usage Source Water Return Flows								
 Node based withdrawals and returns 	Monthly User Dis Manual M&I Agricultu	tribution —	– Annual Baseline U Total Use (MGY)	bistribute	C times	mat thly means series			
 Municipal water demands (prescribed 	Monthly Baseline Month Jan	Usage Monthly Usage	% Indoor Use	% CU Indoor	% CU Outdoor				
monthly mean)	Feb Mar Apr May	1.34 1.33 1.31 1.36	100 100 100 100 100	74.54 75.3 74.68 77.46	100 100 100 100				
	Jun Jul Aug Sep Oct	1.43 1.44 1.42 1.45	100 100 100 100	79.85 80.39 79.36 81.93	100 100 100 100				
WS: Pickens	Nov Dec	1.30 1.32 1.32 (MGD)	100 100 100	79.34 76.17	100 100 100				
						S	ave	Close	

SWAM Calculations: Reservoirs

- Reservoir Object:
 - Dynamic water balance, water supply pool, customized operating rules

Reservoir Name:	Delete	Storage Capacity	Initial Storage	Dead Pool	O Offline		
Lake Thurmond 🛛 👻	Node	1343920	640000	477372	 Online 		
		(MG)	(MG)	(MG)			
Evaporation			Reservoir Operatio	ons		Flood Control Ou	utflow
○ Monthly Mean ○ % V	olume 🤉 Input	t Timeseries	Receiving S	tream: O	Simple	% Vol	Outflow
,	Edit	Timocorios	Mainstem	- 0	Advanced		
	Edic	linesenes	Poloaso Loc	ation	(mi)	100	0
	Area-Capaci	ty Table	Release Account	acion 131.5	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	• <u>Simple</u>	e O <u>Detailed</u>	C all u				
	Volume	Area	• All Users				
	0	0	Specified	User			
	356004	36200					
	381246	39000					
	521362	49500					I
	606084	57000					(CFS)
	817887	70250					
	944969	78500					
	1343920	111065					
	(MG)	(Ac)					
						Sa	ve
Comments:							

USACE Reservoir Operations and Drought Plan

SWAM Calculations: Reservoirs

Reservoir Object:

 Example operating rule: Lake Thurmond Drought Level 1 Release Rules

Minimum Storage Instrear	n Releases Curve n Flow	Pn V	ority #3 Include Rule	⊡ Мо	ving Target?	Le	vel 1 rele	ase ru	ules. Rules ap	ply if water level is	above	.evel 2 trig	jgers.
Moving A	verages	Composit	e Metrics	Ramping	Periods	Mov	ng Trig	gers	□ □ s	tart of Timestep	Stora	ge Condi	tions
Start Date	End Date	Target	Condition	Туре	Conditional Object 1:		Criteria	a1:	Cond. 1:	Conditional Object 2:	Cr	iteria2:	Cond. 2:
04/02	10/15	4200	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	684288	BR28Q10 Gage	▼ =	-	0
10/16	12/15	4200	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	645186	BR28Q10 Gage	▼ =	-	0
12/16	12/31	4200	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	645186	BR28Q10 Gage	-	-	0
01/01	04/01	4200	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	684288	BR28Q10 Gage	-	-	0
04/02	10/15	4000	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	684288	BR28Q10 Gage	-	-	1
10/16	12/15	4000	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	645186	BR28Q10 Gage	-	-	1
12/16	12/31	4000	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	•	645186	BR28Q10 Gage	-	-	1
01/01	04/01	4000	Res Storage Al	ND Flow Ga 👻	Lake Thurmond	-	>	-	684288	BR28Q10 Gage	-	-	1
				•		•		-			•	-	
				•		•		-			•	-	
				•		-		•			-	-	
				•		-		•			-	-	
		(CFS or MG))					(CFS or MG)		(CFS or M
										Si	ive		Close

Duke Energy Low Inflow Protocol

		Minimum Reservoir	Elevation ft AMSL	Maximum Weekly Keowee	Dublic Water Complian	
LIP Stage	Duke Energy Storage Index ¹	Jocassee	Keowee	Water Flow Release ac-ft (cfs)	Withdrawal Reductions	
0	85% <= Storage Index < 90%	1006	706	25,000 (1800)	22	
0	80% <= Storage Index < 85%	1096	796	20,000 (1440)	па	
1	na	1092	795	18,750 (1350)	3-5% (goal)	
2	na	1087	793	15,000 (1080)	5-10% (goal)	
3	na	1083	792	10,000 (720)	10-20% (goal)	
4	12% < Storage Index < 25%	1080	791.5	7,500 (540) ²	20.20%	
4	Storage Index < 12%		790	Leakage	20-5078	

Notes:

¹ Storage Index includes remaining usable storage in Keowee, Jocassee, and Bad Creek

² No releases that would cause Keowee to fall below 791.5 ft AMSL

LIP Stage Triggers

Stage	Trigger		US Drought Monitor ² (12- wk avg)	Streamflow (LTA versus previous 4 months) ³
0	Duke Energy Storage Index ¹ < 90% & USACE Storage Index ⁴ < 90%	and ano of the	>=0	< 85%
1	USACE in DP 1	following	1	< 75%
2	USACE in DP 2	TOHOWING	2	< 65%
3	USACE in DP 3		3	< 55%
4	Duke Energy Storage Index < 25%		4	< 40%

Notes:

LTA - long-term average; DP - Drought Plan

¹ The Duke Energy Storage Index is based on the usable storage for Keowee, Jocassee, and Bad Creek as specified in the LIP

² The US Drought Monitor uses an area-weighted average

³ Streamflow gages are composite averages of Twelvemile Creek near Liberty, SC; Chattooga River near Clayton, GA; French Broad River near Rosman, NC

⁴ USACE Storage Index includes usable storage for Hartwell, Russell, and Thurmond

Model Time Steps

- Model simulations may use a daily or monthly timestep
- A monthly timestep will be used to look for shortages, test and compare management strategies, and compare flows at strategic nodes.
- A daily timestep will be used for comparison to minimum instream flows and for determining changes in risk in ecological-flow relationships.

Model Calibration

- Calibration performed for multiple sites across a wide range of hydrologic conditions
- Calibration Targets: USGS streamflow gage records
- Key calibration parameters: reach gain/loss factors
- Performance metrics:
 - Annual avg flows (overall water balance)
 - Monthly avg flows (seasonality)
 - Flow percentile distributions (variability, extreme events)
 - Flow timeseries (specific timings, operations)
 - Cumulative flows over entire calibration period
 - Reservoir storage timeseries

Model Calibration

1 Predictive Calibration

- 1983 2013 for mainstem and tributaries
- Static reservoir operations used (but historical operations varied)
- Most useful for tributaries and overall mass balance

2 Prescriptive Downstream Hydrology Validation

- 1983 2013 for mainstem
- Use published discharges at Hartwell and Thurmond
- Removes upstream operation uncertainty
- Validate model reach gains/losses below USACE reservoirs

3 Predictive Baseline Model Verification

• 2012 and 2013 using current USACE reservoir operations

Comparison of Monthly Gaged and Modeled Flows

Comparison of Daily Gaged and Modeled Flows

Comparison of Measured and Modeled Lake Levels

2021 Surface Water Model Updates

- Extended baseline hydrology through 2021 (added 7 years)
- Updated monthly mean water demands based on recent water use data
- Updated permit and intake location information
- Removed inactive permittees
- Added new registrations
- Software updates

Model Limitations

- Greater uncertainty in predictions for ungaged reaches compared to gaged
- Model not designed for reach routing of flow changes at a sub-daily timestep
- Greater uncertainty in supply availability (and "shortage") predictions associated with small stream withdrawals compared to larger river and reservoir withdrawals
 - e.g. offline irrigation ponds
- Baseline model assumes past hydrologic variability is representative of future hydrologic variability (stationary climate)

Saluda River Basin Surface Water Model Framework

Evaluating Projected Demands (Example)

Performance Measures

Assessment of simulation results will focus on quantifying key performance measures for strategic nodes and reaches of interest across the basin.

Example / Suggestions:

- Percent change in a monthly minimum flow, 5th percentile flow, mean, and/or median flow
- Percent change in seasonal or monthly flows
- Percent change in surface water supply
- Percent change in mean annual shortage or mean percent shortage
- Change in the number and magnitude of excursions below 20, 30 and 40 percent mean annual daily flows and/or 7Q10 flow
- Change in number of water users that experience a shortage
- Change in the average frequency of shortage
- Percent of time recreational facilities were unavailable on a stream reach

SWAM Overview and Training

Potential SWAM training days

- Wednesday, February 28th
- Thursday, February 29th (the LSS RBC's Preferred day)

• Training would be from 10 am to 2 pm, with lunch provided.

Surface Water Model Access

- Available for download at: <u>http://hydrology.dnr.sc.gov/surface-water-models.html</u>
- Also available for download:
 - SWAM User's Manual
 - Model reports for each basin
 - Supplementary technical memoranda

Overview

Effective water planning and management requires an accurate assessment of the State's surface water resources. To that end, the SCDNR has supported the development of surface-water quantity models that simulate the surface water system for each of the eight major river basins in South Carolina. The modeling platform is the Simplified Water Allocation Model (SWAM), developed by CDM Smith, Inc. These models will be used to evaluate current and future water availability and will support the development of state and regional water plans. Use the links below to access modeling reports and other documentation for each basin's SWAM model and to learn more about how the SWAM models were developed. Surface Water Models SCDNR has publicly released the Simplified Water Allocation Models (SWAM) for the Edisto, Saluda, and Salkehatchie river basins.

ownload SWAM Model